

كلية الطوم القاتونية والاقتصادية والاجتماعية السويسي-الرباط Faculé des Sciences Juridiques Economiques et Sociales Souissi Rabat

Applications in Computational Economics

By: Ahmed Kchikeche

Applications in Computational Economics: Multivariate time series analysis

The properties of time series

1. Some definitions

- A **Time Series (TS)** is a sequence of data points collected or recorded at regular time intervals.
- A **Data Generating Process (DGP)** is the real world that "generates" the observed time series data.
- A time series is a **realization** (sample path) of its data generating process.
 - A realization is **the observed sequence of outcomes produced by the DGP**, representing a single trajectory of the possible outcomes of the DGP

1.1. Components of a Time Series

- **Trend**: Long-term movement of the time series.
- **Cyclical component** : Fluctuations of the time series, of more than one year linked to business cycles, but without fixed periods.
- The seasonal component: Regular, repeating patterns, within a year.
- **Residual**: Random, unpredictable fluctuations in the time series.

1.2. Classical vs. Modern Time Series Analysis

- Classical time series analysis traditionally assumes that trend, cycle, and seasonality are deterministic components, and the only random component is the residual part of the series.
- In contrast to classical models, **modern time series analysis** treats components like the trend, cycle, and even seasonality **as potentially stochastic** (i.e., governed by random processes rather than deterministic functions).

Application 1: Calculating the output gap using EVIEWS

- **Data**: GDP, current prices, Billions of U.S. dollar
- Source: International Monetary Fund, World Economic Outlook: <u>https://www.imf.org/external/datamap</u> <u>per/NGDPD@WEO/MAR?zoom=MAR&</u> <u>highlight=MAR</u>
- Application using EVIEWS 13

i) Calculating potential output using the HP filter

- Step 1: Open EViews and load the dataset containing the actual output (e.g., GDP) series
- Step 2: Select the actual output series (GDP).
 - Click on Proc → Hodrick-Prescott Filter.
- Step3: Enter the smoothing parameter (for quarterly data, $\lambda = 1600$; for annual data, $\lambda = 100$)

ii) Defining the output gap

- The output gap is an economic measure of the difference between the actual output of an economy and its potential output.
- Potential output is the maximum amount of goods and services an economy can turn out when it is most efficient—that is, at full capacity.
- The output gap is calculated as the percentage difference between actual output and potential output.

• Output Gap (%) = Log(Actual Output) - log(Potential Output)

iii) Calculatingthe output gapusing Eviews

- Command in EVIEWS:
- series output_gap = log(gdp) - log(gdp_trend)

2. Seasonality

- Seasonality in a time series refers to regular, repeating patterns or fluctuations that occur at specific intervals or periods of time, typically within a year, month, or day.
- These patterns are driven by seasonal factors such as **weather** or **Cultural and Religious Events**, and they recur at fixed, predictable periods.

Application 2: Seasonal adjustment using the X-13 ARIMA-SEATS method

- **Data**: Produits intérieur brut prix chaînés base 2014
- **Source** : MEF, Direction des Etudes et des Prévisions Financières <u>https://manar.finances.gov.ma/manar</u> <u>/Consultation_domainetableau</u>
- Application using EVIEWS 13

2.1. Checking for seasonality

- Step 1: Open EViews and load the dataset containing the series
- Step 2: Select the actual output series (GDP).
 - Click on View \rightarrow Graph \rightarrow Seasonal graph
- Step 3: Compare the means

2.2. Seasonal adjustment

- Step 1: Open EViews and load the dataset containing the series
- Step 2: Select the series (PIB).
 - Click on Proc → Seasonal Adjustment
 → Census X-13
 - Check Proc \rightarrow X-11 auto
 - Click ok
- Step 3: Check the new series with the suffix d_11

2.3. Comparing the series

- Step 1: Select both series (Ctrl + click)
- Step 2: Right click \rightarrow Open \rightarrow As group
- Step 3: Click on View \rightarrow Graph \rightarrow Seasonal graph

3. Stationarity: intuition

- A time series is stationary if its statistical properties (mean, variance, and autocovariance) are constant over time.
- Many time series models and tests assume that the underlying data is stationary.
 - These models rely on the constancy of statistical properties over time, which allows for better prediction and interpretation.
 - Statistical inference, such as **hypothesis testing** (e.g., t-tests, F-tests), assumes stationarity. Non-stationary series violate these assumptions, leading to biased or inconsistent test results.

3.1. Unit root tests: Interpretation

- Step 1: state the null (H0) and alternative hypothesis (H1)
 - The H0 of the ADF and PP tests is (the series has a unit root while the H0 for the KPSS test is (the series is stationary)
- Step 2: Calculate the test statistic (Based on the appropriate specification of the test equation : Trend & Intercept; Intercept; None)
- Step 3: Apply the decision rule either by
 - Interpreting the p-value :
 - If p-value < 5% => reject the null hypothesis (Use the P-value to interpret the ADF and PP tests)
 - Comparing the calculated and critical values of the test statistic (For the KPSS test: If the test statistic is greater than the critical value, reject the null hypothesis)

Application 3: Unit root tests (ADF)

- **Data**: Produits intérieur brut prix chaînés base 2014
- **Source** : MEF, Direction des Etudes et des Prévisions Financières <u>https://manar.finances.gov.ma/manar</u> <u>/Consultation_domainetableau</u>
- Application using EVIEWS 13

Unit root tests in EVIEWS (1)

Step 1: Select the actual output series (GDP).
Click on View → Unit root tests → Standard Unit root test

Step 2: select the level of the variable (1st diff if the series is not stationary in Level)

Step 3: specify the test equation (start with Trend and intercept, and go from there)

iew Proc Object Properties Print Na	ame	Freeze	Defau	t ~	Sort	Edit+/-	imp
SpreadSheet		d11					
Graph		100104	44.00				
Descriptive Statistics & Tests One-Way Tabulation Duplicate Observations	•	5/23/24 - 51="2014	Q1 202	23Q4", ht	tml) @	x11ari	
Correlogram Long-run Variance							
Unit Root Tests	►	Standard Unit Root Test			1		
Variance Ratio Test		Breakpoint Unit Root Test			L		
BDS Independence Test		Seasonal Unit Root Test			L		
Forecast Evaluation							
Wavelet Analysis	►						
Label		-					

Unit Root Test	×
Test type Augmented Dickey-Fuller	~
Test for unit root in Level 1st difference 2nd difference	Lag length ● Automatic selection: Schwarz info criterion ∨
Include in test equation Intercept Trend and intercept None	Maximum lags: 9 Ouser specified: 1
	OK Cancel

Unit root tests in EVIEWS (2)

• Step 1: Make sure the test equation is valid (here, the trend is significant (p-value is less than 5%), thus we can proceed. Otherwise, you redo the test with only the intercept and verify its significance before you proceed)

• Step 2: Interpret the test using the appropriate decision rule.

Null Hypothesis: PIB_D11 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.868187	0.1834
Test critical values.	5% level 10% level	-4.211808 -3.529758 -3.196411	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(PIB_D11) Method: Least Squares Date: 10/25/24 Time: 13:03 Sample (adjusted): 2014Q2 2023Q4 Included observations: 39 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB_D11(-1)	-0.374689 95684 11	0.130636	-2.868187	0.0069
@TREND("2014Q1")	525.8817	204.7360	2.568584	0.0145